

Art of Problem Solving popcorn1's AMC 8 2018 (Rules)

Rules	READ ALL OF THESE RULES BEFORE CONTINUING.
	1. DO NOT OPEN THIS BOOKLET UNTIL YOU HAVE SET YOUR TIMER
	TO 40 MINUTES.
	2. This is a twenty-five question multiple choice test. For each question, only
	one answer choice is correct.
	3. Mark your answer to each problem on the popcorn1's AMC 8 Answer Form.
	You may want to mark your answers on paper and then, after the test is over,
	submit your answers using the form.
	4. There is no penalty for guessing. Your score is the number of correct answers.
	5. Only scratch paper, graph paper, rulers, protractors, and erasers are allowed
	as aids. Calculators are NOT allowed. No problems on the test require the use
	of a calculator.
	6. Figures are not necessarily drawn to scale.
	7. You will have 40 minutes to complete the test once you start your timer.
	8. When you finish the exam, put your AoPS username in the space provided
	on the answer form.
	BY CONTINUING, YOU AGREE TO ALL OF THE ABOVE RULES.

Art of Problem Solving popcorn1's AMC 8 2018

Which of these	numbers is	the same up	pside down?	
(A) 68 (B)	69 (C)	70 (D)) 71 (E)	72
Three distinct p	ositive inte	egers have a	product of	15 and a sum of n . Find n .
(A) 7 (B) 8	(C) 9	(D) 10	(E) 17	
How many rearn four-digit number	angements r?	of the digit	s of the nur	nber 2018 do not result in a
(A) 0 (B) 4	(C) 6	(D) 12	(E) 18	
Which of the op	tions is the	e sum of the	other four?	,
(A) - 26 (1	B) - 6	(C) 12	(D) 20	(E) 24
W, X, Y, and Z distances betwee	are four co n points.	ollinear poin	ts. The tab	ble below shows some of the
Line Segment	Length			
XZ	5			
WY	6			
XW	3			
WZ	2			
ZY	4			
Find the longest	distance b	etween any	two of these	e four points.
(A) 6 (B) 7	(C) 8	(D) 9	(E) 10	
A three-digit po to n . What is n	sitive integ	er has the p	product and	sum of its digits both equal
(A) 6 (B) 7	(C) 8	(D) 9	(E) 10	
Which of these i	s the large	st?		
(A) 2018 (E	5) 2 ⁰¹⁸	(C) 20 ¹⁸	(D) 201 ⁸	(E) $2^0 \times 1^8$
	(A) 68 (B) Three distinct p (A) 7 (B) 8 How many rearr four-digit number (A) 0 (B) 4 Which of the op (A) -26 (B W, X, Y, and Z distances between Line Segment XZ WY XW WZ ZY Find the longest (A) 6 (B) 7 A three-digit post to n. What is n? (A) 6 (B) 7 Which of these i (A) 2018 (B	Which of these humbers is(A) 68(B) 69(C)Three distinct positive inter(A) 7(B) 8(C) 9How many rearrangements four-digit number?(A) 0(B) 4(C) 6Which of the options is the (A) -26 (B) -6 Which of the options is the (A) -26 (B) -6 W, X, Y, and Z are four co distances between points.Line SegmentLengthXZ5WY6XW3WZ2ZY4Find the longest distance b (A) 6(B) 7(A) 6(B) 7(C) 8A three-digit positive integ to n. What is n?(A) 6(B) 7(C) 8Which of these is the large (A) 2018(B) 2^{018}	Which of these humbers is the same up(A) 68(B) 69(C) 70(D)Three distinct positive integers have a(A) 7(B) 8(C) 9(D) 10How many rearrangements of the digit four-digit number?(A) 0(B) 4(C) 6(D) 12Which of the options is the sum of the (A) -26 (B) -6 (C) 12Which of the options is the sum of the (A) -26 (B) -6 (C) 12W, X, Y, and Z are four collinear point distances between points.Line SegmentLengthXZ5WY6XW3WZ2ZY4Find the longest distance between any (A) 6(B) 7(C) 8(D) 9A three-digit positive integer has the p to n. What is n?(A) 6(B) 7(C) 8(D) 9Which of these is the largest?(A) 2018(B) 2 ⁰¹⁸ (C) 20 ¹⁸	(A) 68(B) 69(C) 70(D) 71(E)Three distinct positive integers have a product of(A) 7(B) 8(C) 9(D) 10(E) 17How many rearrangements of the digits of the num four-digit number?(A) 0(B) 4(C) 6(D) 12(E) 18Which of the options is the sum of the other four?(A) -26 (B) -6 (C) 12(D) 20 $W, X, Y,$ and Z are four collinear points. The tak distances between points.Line SegmentLength XZ 5 WY 6 XW 3 WZ 2 ZY 4Find the longest distance between any two of these(A) 6(B) 7(C) 8(D) 9(E) 10A three-digit positive integer has the product and to n. What is n?(A) 6(B) 7(C) 8(D) 9(E) 10Which of these is the largest?(A) 2018(B) 2 ⁰¹⁸ (C) 20 ¹⁸ (D) 201 ⁸

www.artofproblemsolving.com/community/c726433 Contributors: popcorn1

Art of Problem Solving popcorn1's AMC 8 2018

8	The center of a square is $\sqrt{2}$ units away from one of the vertices. What is its area?			
	(A) 1 (B) 4 (C) 9 (D) 16 (E) 25			
9	For distinct positive integers A, M , and C , it is known that $A + M + C = 8$. Find the maximum possible value of $A \times M \times C$.			
	(A) 10 (B) 12 (C) 15 (D) 16 (E) 18			
10	The ratio of the area of one square to another square is 4 : 9. One of the squares has a perimeter of 12. Find the maximum possible perimeter of the other square.			
	(A) 8 (B) 12 (C) 16 (D) 18 (E) 27			
11				

In the unit cube shown above, how many distinct paths are there to get from A to G by only walking along the edges and walking a total of 3 units?

	(A) 3 (B) 4 (C) 5 (D) 6 (E) 8				
12	A square of area 100 is cut into four rectangles. What is the maximal sum of the four rectangles' perimeters?				
	(A) 40 (B) 60 (C) 80 (D) 96 (E) 100				
13	60 adults were surveyed on whether they preferred football or basketball. Th ratio of women who said they liked football to the number of women who said they liked basketball was 4 : 5, and the ratio of males to females surveyed wa				

www.artofproblemsolving.com/community/c726433 Contributors: popcorn1

Art of Problem Solving

popcorn1's AMC 8 2018

1:3. The number of people who preferred football was a perfect cube. How many men liked basketball?

(A) 6	(B) 7	(C) 8	(D) 9	(E) 10
-------	--------------	-------	--------------	---------------

In the diagram below, the top circle of radius 1 is rolled around the bottom circle of radius 1 until it goes into the dotted outline. When the top circle stops in the dotted outline, which direction is the arrow on the circle pointing?

(E) It depends on the speed of rotation (A) up (B) down (**C**) left (D) right

 $\mathbf{15}$

 $\mathbf{14}$

Four buttons are in a row as shown. When you push a button, the button and all buttons adjacent to it invert (happy becomes sad and vice versa.) Find the *fewest* number of buttons one needs to push so that all the faces are happy.

(A) 1 **(B)** 2 (C) 3 **(D)** 4 **(E)** 5

16

Seven coins are in a row, all heads up. How many ways can you flip three of them so that no two coins showing tails are adjacent to each other? The order in which the coins are flipped does not matter.

Art of Problem Solving

popcorn1's AMC 8 2018

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

17	Leo has nine cards with the integers from 1 to 9, inclusive. He picks two of the nine cards. The probability that their product is a prime number is $\frac{n}{72}$. What is n ?			
	(A) 4 (B) 8 (C) 10 (D) 12 (E) 20			
18	In convex quadrilateral $WXYZ$, $WX = 6$, $XY = 8$, $YZ = 15$, and the perimeter is $29 + 5\sqrt{13}$. $\angle WXY = 90^{\circ}$. Find the area of the quadrilateral. (A) $\frac{99}{2}$ (B) 50 (C) 99 (D) 100 (E) 198			
19	There is a three digit number \overline{abc} such that $a! + b! + c! = \overline{abc}$. Find $a + b + c$. Note: \overline{abc} represents the three digit number formed by placing the digits a, b, c next to each other, rather than their product. $N!$ is the product of all integers from 1 to N , inclusive.			
	(A) 10 (B) 11 (C) 12 (D) 13 (E) 14			
20	Let e be the number of even factors of 3210 and o be the number of odd factors of 3210. Find the value of $\frac{o}{e}$.			
	(A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$ (E) 1			
21	In equilateral triangle ABC , B is the midpoint of AD and C is the midpoint of DE . Find the length AE , given that $AB = 1$.			
	(A) 1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) 2 (E) $2\sqrt{3}$			
22	Four real numbers a, b, c , and d satisfy $a + 1 = b - 2 = c^2 + 3 = d^2 - 4$. Which of them is the largest?			
	(A) a (B) b (C) c (D) d (E) Multiple answers are possible.			
23	Simon and Gary are playing a game. Gary picks a three-digit number with all digits different and no digits equal to zero. Then, Simon tells Gary what number he thinks it is and Gary tells him how many digits are correct. For example, if Gary's number is 234 and Simon says 354, Gary would tell Simon 2. The game continues until Simon's guess matches Gary's number exactly. For one game, the dialogue went as follows: Simon: 628. Gary: 2.			

Art of Problem Solving

popcorn1's AMC 8 2018

Simon: 638. Gary: 2.

What is the *fewest* number of additional guesses Simon must do to be *absolutely* sure he knows Gary's number? The final guess where Simon says Gary's number counts as a guess.

(A) 7 **(B)** 11 (C) 12 **(D)** 13 **(E)** 15

Thirty-six red, blue, and green beads are in the ratio 1:2:3. They are then placed in a 6×6 square, with one bead per square and such that if two beads shared the same color, their cells did not share a side. How many different possibilities are there for the arrangement of beads in the 3×3 square shown? Note: two arrangements are considered different if they are not identical. Rotations and reflections are considered different.

(A) 16 **(B)** 24 (C) 32 **(D)** 48 **(E)** 54

 $\mathbf{25}$ David has a paper rectangle ABCD such that AB = 2 and BC = 1. He folds it such that A lands on C. Then he folds it such that B lands on D. Then he traces the resulting shape onto a piece of paper. What is the area of the shape David traced? (A) $\frac{9}{16}$ (B) $\frac{5}{8}$ (C) $\frac{11}{16}$ (D) $\frac{3}{4}$ (E) $\frac{13}{16}$

 $\mathbf{24}$